Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Sci Rep ; 14(1): 6959, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521811

RESUMO

Abdominal aortic aneurysm (AAA) is a deadly, permanent ballooning of the aortic artery. Pharmacological and genetic studies have pointed to multiple proteins, including microsomal prostaglandin E2 synthase-1 (mPGES-1), as potentially promising targets. However, it remains unknown whether administration of an mPGES-1 inhibitor can effectively attenuate AAA progression in animal models. There are still no FDA-approved pharmacological treatments for AAA. Current research stresses the importance of both anti-inflammatory drug targets and rigor of translatability. Notably, mPGES-1 is an inducible enzyme responsible for overproduction of prostaglandin E2 (PGE2)-a well-known principal pro-inflammatory prostanoid. Here we demonstrate for the first time that a highly selective mPGES-1 inhibitor (UK4b) can completely block further growth of AAA in the ApoE-/- angiotensin (Ang)II mouse model. Our findings show promise for the use of a mPGES-1 inhibitor like UK4b as interventional treatment of AAA and its potential translation into the clinical setting.


Assuntos
Aneurisma da Aorta Abdominal , Animais , Camundongos , Angiotensina II , Aorta/metabolismo , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/metabolismo , Dinoprostona/uso terapêutico , Modelos Animais de Doenças , Prostaglandina-E Sintases/genética , Prostaglandinas
2.
Sci Rep ; 14(1): 927, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195724

RESUMO

Cocaine dependence is a serious world-wide public health problem without an FDA-approved pharmacotherapy. We recently designed and discovered a highly efficient long-acting cocaine hydrolase CocH5-Fc(M6). The present study examined the effectiveness and duration of CocH5-Fc(M6) in blocking interoceptive effects of cocaine by performing cocaine discrimination tests in rats, demonstrating that the duration of CocH5-Fc(M6) in blocking cocaine discrimination was dependent on cocaine dose and CocH5-Fc(M6) plasma concentration. Particularly, a dose of 3 mg/kg CocH5-Fc(M6) effectively attenuated discriminative stimulus effects of 10 mg/kg cocaine, cumulative doses of 10 and 32 mg/kg cocaine, and cumulative doses of 10, 32 and 56 mg/kg cocaine by ≥ 20% for 41, 19, and 10 days, and completely blocked the discriminative stimulus effects for 30, 13, and 5 days with corresponding threshold plasma CocH5-Fc(M6) concentrations of 15.9, 72.2, and 221 nM, respectively, under which blood cocaine concentration was negligible. Additionally, based on the data obtained, cocaine discrimination model is more sensitive than the locomotor activity to reveal cocaine effects and that CocH5-Fc(M6) itself has no long-term toxicity regarding behavioral activities such as lever pressing and food consumption in rats, further demonstrating that CocH5-Fc(M6) has the desired properties as a promising therapeutic candidate for prevenance of cocaine dependence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Ratos , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cocaína/farmacologia , Hidrolases de Éster Carboxílico , Locomoção
3.
Int J Biol Macromol ; 259(Pt 2): 129313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216012

RESUMO

Prolyl endopeptidases (PEP) from Sphingomonas capsulata (sc) and Myxococcus xanthus (mx) selectively degrade gluten peptides in vitro, offering a potential therapeutic strategy for celiac disease. However, the mechanisms governing the interaction of these enzymes with their substrates remain unclear. In this study, conventional molecular dynamics simulations with a microsecond timescale and targeted molecular dynamics simulations were performed to investigate the native states of mxPEP and scPEP enzymes, as well as their allosteric binding with a representative substrate, namely, Z-Ala-Pro-p-nitroanilide (pNA). The simulations reveal that the native scPEP is in an open state, while the native mxPEP is in a closed state. When pNA approaches a closed mxPEP, it binds to an allosteric pocket located at the first and second ß-sheet of the ß-propeller domain, inducing the opening of this enzyme. Neither enzyme is active in the open or partly-open states. Enzymatic activity is enabled only when the catalytic pocket in the closed state fully accommodates the substrates. The internal capacity of the catalytic pocket of PEP in the closed state determines the maximum size of the gluten peptides that the enzymes can catalyze. The present work provides essential molecular dynamics information for the redesign or engineering of PEP enzymes.


Assuntos
Doença Celíaca , Prolil Oligopeptidases , Humanos , Prolil Oligopeptidases/metabolismo , Serina Endopeptidases/química , Simulação de Dinâmica Molecular , Glutens/química , Peptídeos/química
4.
J Phys Chem B ; 127(50): 10723-10729, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38063500

RESUMO

A combined computational and experimental study has been carried out to explore and test a quantitative correlation relationship between the relative catalytic efficiency (RCE) of human butyrylcholinesrase (BChE) mutant-catalyzed hydrolysis of substrate (-)-cocaine and the total hydrogen bonding energy (tHBE) of the carbonyl oxygen of the substrate with the oxyanion hole of the enzyme in the modeled transition-state structure (TS1), demonstrating a satisfactory linear correlation relationship between ln(RCE) and tHBE. The satisfactory correlation relationship has led us to computationally predict and experimentally confirm new human BChE mutants that have a further improved catalytic activity against (-)-cocaine, including the most active one (the A199S/F227S/S287G/A328W/Y332G mutant) with a 2790-fold improved catalytic efficiency (kcat/KM = 2.5 × 109 min-1 M-1) compared to the wild-type human BChE. Compared to the reference mutant (the A199S/S287G/A328W/Y332G mutant) tested in the reported clinical development of an enzyme therapy for cocaine dependence treatment, this new mutant (with a newly predicted additional F227S mutation) has an improved catalytic efficiency against (-)-cocaine by ∼2.6-fold. The good agreement between the computational and experimental ln(RCE) values suggests that the obtained correlation relationship is robust for computational prediction. A similar correlation relationship could also be explored in studying BChE or other serine hydrolases/esterases with an oxyanion hole stabilizing the carbonyl oxygen in the rate-determining reaction step of the enzymatic hydrolysis of other substrates.


Assuntos
Butirilcolinesterase , Cocaína , Humanos , Butirilcolinesterase/genética , Butirilcolinesterase/química , Catálise , Cocaína/química , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Oxigênio
5.
J Med Chem ; 66(17): 12479-12498, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37623046

RESUMO

Opioid use disorder (OUD) has emerged as a significant global public health issue, necessitating the discovery of new medications. In this study, we propose a deep generative model that combines a stochastic differential equation (SDE)-based diffusion model with a pretrained autoencoder. The molecular generator enables efficient generation of molecules that target multiple opioid receptors, including mu, kappa, and delta. Additionally, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of the generated molecules to identify druglike compounds. We develop a molecular optimization approach to enhance the pharmacokinetic properties of some lead compounds. Advanced binding affinity predictors were built using molecular fingerprints, including autoencoder embeddings, transformer embeddings, and topological Laplacians. Our process yields druglike molecules that can be used in highly focused experimental studies to further evaluate their pharmacological effects. Our machine learning platform serves as a valuable tool for designing effective molecules to address OUD.


Assuntos
Aprendizado de Máquina , Transtornos Relacionados ao Uso de Opioides , Humanos , Difusão , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Receptores Opioides
6.
ArXiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37396606

RESUMO

Opioid Use Disorder (OUD) has emerged as a significant global public health issue, with complex multifaceted conditions. Due to the lack of effective treatment options for various conditions, there is a pressing need for the discovery of new medications. In this study, we propose a deep generative model that combines a stochastic differential equation (SDE)-based diffusion modeling with the latent space of a pretrained autoencoder model. The molecular generator enables efficient generation of molecules that are effective on multiple targets, specifically the mu, kappa, and delta opioid receptors. Furthermore, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of the generated molecules to identify drug-like compounds. To enhance the pharmacokinetic properties of some lead compounds, we employ a molecular optimization approach. We obtain a diverse set of drug-like molecules. We construct binding affinity predictors by integrating molecular fingerprints derived from autoencoder embeddings, transformer embeddings, and topological Laplacians with advanced machine learning algorithms. Further experimental studies are needed to evaluate the pharmacological effects of these drug-like compounds for OUD treatment. Our machine learning platform serves as a valuable tool in designing and optimizing effective molecules for addressing OUD.

7.
BioDrugs ; 37(5): 649-674, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37464099

RESUMO

In recent years, machine learning (ML) techniques have garnered considerable interest for their potential use in accelerating the rate of drug discovery. With the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the utilization of ML has become even more crucial in the search for effective antiviral medications. The pandemic has presented the scientific community with a unique challenge, and the rapid identification of potential treatments has become an urgent priority. Researchers have been able to accelerate the process of identifying drug candidates, repurposing existing drugs, and designing new compounds with desirable properties using machine learning in drug discovery. To train predictive models, ML techniques in drug discovery rely on the analysis of large datasets, including both experimental and clinical data. These models can be used to predict the biological activities, potential side effects, and interactions with specific target proteins of drug candidates. This strategy has proven to be an effective method for identifying potential coronavirus disease 2019 (COVID-19) and other disease treatments. This paper offers a thorough analysis of the various ML techniques implemented to combat COVID-19, including supervised and unsupervised learning, deep learning, and natural language processing. The paper discusses the impact of these techniques on pandemic drug development, including the identification of potential treatments, the understanding of the disease mechanism, and the creation of effective and safe therapeutics. The lessons learned can be applied to future outbreaks and drug discovery initiatives.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Aprendizado de Máquina , Antivirais/uso terapêutico , Reposicionamento de Medicamentos
8.
Int J Neuropsychopharmacol ; 26(6): 415-425, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37208298

RESUMO

BACKGROUND: Phosphodiesterase 2A (PDE2A) represents a novel target for new therapies addressing psychiatric disorders. To date, the development of PDE2A inhibitors suitable for human clinical evaluation has been hampered by the poor brain accessibility and metabolic stability of the available compounds. METHODS: Corticosterone (CORT)-induced neuronal cell lesion and restraint stress mouse model were used to measure the neuroprotective effect in cells and antidepressant-like behavior in mice. RESULTS: The cell-based assay showed that both Hcyb1 and PF were potent in protecting cells against stress hormone CORT insults by stimulating cAMP and cGMP signaling in hippocampal cells (HT-22). Administration of both compounds before treatment of CORT to cells increased cAMP/cGMP, VASP phosphorylation at Ser239 and Ser157, cAMP response element binding protein phosphorylation at Ser133, and brain derived neurotrophic factor BDNF expression. Further in vivo study showed that both Hcyb1 and PF displayed -antidepressant- and anxiolytic-like effects against restraint stress as indicated by reduced immobility time in the forced swimming and tail suspension tasks as well as increased open arm entries and time spent in open arms and holes visit in elevated plus maze and hole-board tests, respectively. The biochemical study confirmed that these antidepressant- and anxiolytic-like effects of Hcyb1 and PF were related to cAMP and cGMP signaling in the hippocampus. CONCLUSIONS: The results extend the previous studies and validate that PDE2A is a tractable target for drug development in the treatment of emotional disorders such as depression and anxiety.


Assuntos
Ansiolíticos , Inibidores de Fosfodiesterase , Camundongos , Humanos , Animais , Inibidores de Fosfodiesterase/farmacologia , Depressão/psicologia , Ansiolíticos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/induzido quimicamente , Hipocampo , Diester Fosfórico Hidrolases/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Comportamento Animal , Modelos Animais de Doenças
9.
Org Biomol Chem ; 21(17): 3650-3659, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067022

RESUMO

In the presence of alcohol, cocaine metabolism produces a number of metabolites, including three toxic ones (cocaethylene, norcocaine, and norcocaethylene) which are all more toxic than cocaine itself, with the toxicity in the order of cocaine < cocaethylene < norcocaine < norcocaethylene. In this study, we performed kinetic analysis on our previously reported cocaine hydrolase (E30-6) for its catalytic activities accelerating the hydrolysis of the three toxic metabolites in comparison with cocaine. Based on the obtained kinetic data, the in vitro catalytic efficiencies of the enzyme against these substrates are in the order of cocaine > cocaethylene > norcocaine > norcocaethylene. It has been demonstrated that E30-6 can efficiently accelerate the hydrolysis of not only cocaine itself, but also all three toxic metabolites in vitro and in vivo. E30-6 is the most efficient enzyme for each of these toxic substrates (cocaine, cocaethylene, norcocaine, and norcocaethylene) among all the reported enzymes as far as we know at this point. These findings suggest that E30-6 is capable of efficiently treating cocaine toxicity even when alcohol and cocaine are used concurrently.


Assuntos
Cocaína , Cinética , Cocaína/química , Etanol
10.
Am J Cancer Res ; 13(3): 976-991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034206

RESUMO

Lung cancer is the leading cause of cancer-related deaths. Lung cancer cells develop resistance to apoptosis by suppressing the secretion of the tumor suppressor Par-4 protein (also known as PAWR) and/or down-modulating the Par-4 receptor GRP78 on the cell surface (csGRP78). We sought to identify FDA-approved drugs that elevate csGRP78 on the surface of lung cancer cells and induce Par-4 secretion from the cancer cells and/or normal cells in order to inhibit cancer growth in an autocrine or paracrine manner. In an unbiased screen, we identified crizotinib (CZT), an inhibitor of activated ALK/MET/ROS1 receptor tyrosine kinase, as an inducer of csGRP78 expression in ALK-negative, KRAS or EGFR mutant lung cancer cells. Elevation of csGRP78 in the lung cancer cells was dependent on activation of the non-receptor tyrosine kinase SRC by CZT. Inhibition of SRC activation in the cancer cells prevented csGRP78 translocation but promoted Par-4 secretion by CZT, implying that activated SRC prevented Par-4 secretion. In normal cells, CZT did not activate SRC and csGRP78 elevation but induced Par-4 secretion. Consequently, CZT induced Par-4 secretion from normal cells and elevated csGRP78 in the ALK-negative tumor cells to cause paracrine apoptosis in cancer cell cultures and growth inhibition of tumor xenografts in mice. Thus, CZT induces differential activation of SRC in normal and cancer cells to trigger the pro-apoptotic Par-4-GRP78 axis. As csGRP78 is a targetable receptor, CZT can be repurposed to elevate csGRP78 for inhibition of ALK-negative lung tumors.

11.
J Mol Model ; 29(3): 83, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862263

RESUMO

CONTEXT AND RESULTS: Aromaticity is a fundamental chemical concept that has been widely used in explaining the reactivity, stability, structure, and magnetic properties of many molecules such as conjugated macrocycles, metal heterocyclic compounds, and certain metal clusters. Porphyrinoids (including porphyrin) are of particular interest in terms of diverse aromaticity. Various indices therefore have been used to predict the aromaticity of porphyrin-like macrocycles. However, the reliability of these indices for porphyinoids is always questionable. In order to assess the performance of the indices, we have selected six representative indices to predict the aromaticity of 35 porphyrinoids. The calculated values were then compared with the corresponding results obtained from experiments. Our studies suggest that the theoretical prediction by nucleus independent chemical shifts (NICS), topology of the induced magnetic field (TIMF), anisotropy of the induced current density (AICD), and gauge including magnetically induced current method (GIMIC) are essentially consistent with experimental evidence in all 35 cases and thus are preferred indices. COMPUTATIONAL AND THEORETICAL TECHNIQUES: Based on density functional theory, the performance of the NICS, TIMF, AICD, GIMIC, harmonic oscillator model of aromaticity (HOMA), and multicenter bond order (MCBO) indices were evaluated theoretically. Molecular geometries were optimized at the M06-2X/6-311G** level. NMR calculations using GIAO or CGST method were performed at the M06-2X/6-311G** level. The above calculations were carried out using Gaussian16 suite. The TIMF, GIMIC, HOMA, and MCBO indices were obtained using the Multiwfn program. The AICD outputs were visualized using the POV-Ray software.

12.
Sci Rep ; 13(1): 3326, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849491

RESUMO

The growing opioid use and overdose crisis in the US is closely related to the abuse of pain medications. Particularly for postoperative pain (POP), ~ 310 million major surgeries are performed globally per year. Most patients undergoing surgical procedures experience acute POP, and ~ 75% of those with POP report the severity as moderate, severe, or extreme. Opioid analgesics are the mainstay for POP management. It is highly desirable to develop a truly effective and safe non-opioid analgesic to treat POP and other forms of pain. Notably, microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1) was once proposed as a potentially promising target for a next generation of anti-inflammatory drugs based on studies in mPGES-1 knockouts. However, to the best of our knowledge, no studies have ever been reported to explore whether mPGES-1 is also a potential target for POP treatment. In this study, we demonstrate for the first time that a highly selective mPGES-1 inhibitor can effectively relieve POP as well as other forms of pain through blocking the PGE2 overproduction. All the data have consistently demonstrated that mPGES-1 is a truly promising target for treatment of POP as well as other forms of pain.


Assuntos
Analgésicos não Narcóticos , Overdose de Drogas , Humanos , Analgésicos Opioides , Dinoprostona , Dor Pós-Operatória/tratamento farmacológico
13.
Sci Rep ; 13(1): 640, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635293

RESUMO

Cocaine is a widely abused, hepatotoxic drug without an FDA-approved pharmacotherapy specific for cocaine addiction or overdose. It is recognized as a promising therapeutic strategy to accelerate cocaine metabolism which can convert cocaine to pharmacologically inactive metabolite(s) using an efficient cocaine-metabolizing enzyme. Our previous studies have successfully designed and discovered a highly efficient cocaine hydrolase, denoted as CocH5-Fc(M6), capable of rapidly hydrolyzing cocaine at the benzoyl ester moiety. In the present study, we determined the kinetic parameters of CocH5-Fc(M6) against norcocaine (kcat = 9,210 min-1, KM = 20.9 µM, and kcat/KM = 1.87 × 105 min-1 M-1) and benzoylecgonine (kcat = 158 min-1, KM = 286 µM, and kcat/KM = 5.5 × 105 min-1 M-1) for the first time. Further in vivo studies have demonstrated that CocH5-Fc(M6) can effectively accelerate clearance of not only cocaine, but also norcocaine (known as a cocaine metabolite which is more toxic than cocaine itself) and benzoylecgonine (known as an unfavorable long-lasting metabolite with some long-term toxicity concerns) in rats. Due to the desired high catalytic activity against norcocaine, CocH5-Fc(M6) is capable of quickly detoxifying both cocaine and its more toxic metabolite norcocaine after intraperitoneally administering lethal dose of 60 or 180 mg/kg cocaine. In addition, the ability of CocH5-Fc(M6) to accelerate clearance of benzoylecgonine should also be valuable for the use of CocH5-Fc(M6) in treatment of cocaine use disorder.


Assuntos
Cocaína , Ratos , Animais , Ratos Sprague-Dawley , Hidrólise , Cocaína/metabolismo
14.
Mol Divers ; 27(5): 2185-2215, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36331786

RESUMO

Some novel triazole-bearing ketone and oxime derivatives were synthesized from Ibuprofen. In vitro cytotoxic activities of all synthesized molecules against five cancer lines (human breast cancer MCF-7, human lung cancer A549, human prostate cancer PC-3, human cervix cancer HeLa, and human chronic myelogenous leukemia K562 cell lines) were evaluated by MTT assay. In addition, mouse embryonic fibroblast cells (NIH/3T3) were also evaluated to determine the selectivity. Compounds 18, 36, and 45 were found to be the most cytotoxic, and their IC50 values were in the range of 17.46-68.76 µM, against the tested cancer cells. According to the results, compounds 7 and 13 demonstrated good anti-inflammatory activity against the microsomal enzyme prostaglandin E2 synthase-1 (mPGES-1) enzyme at IC50 values of 13.6 and 4.95 µM. The low cytotoxicity and non-mutagenity of these compounds were found interesting. Also, these compounds significantly prevented tube formation in angiogenesis studies. In conclusion, the anti-inflammatory and angiogenesis inhibitory activities of these compounds without toxicity suggested that they may be promising agents in anti-inflammatory treatment and they may be supportive agents for the cancer treatment.


Assuntos
Antineoplásicos , Ibuprofeno , Animais , Camundongos , Feminino , Humanos , Relação Estrutura-Atividade , Ibuprofeno/farmacologia , Triazóis/farmacologia , Fibroblastos , Antineoplásicos/farmacologia , Células HeLa , Anti-Inflamatórios/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
15.
Int J High Perform Comput Appl ; 37(1): 45-57, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38603271

RESUMO

As a theoretically rigorous and accurate method, FEP-ABFE (Free Energy Perturbation-Absolute Binding Free Energy) calculations showed great potential in drug discovery, but its practical application was difficult due to high computational cost. To rapidly discover antiviral drugs targeting SARS-CoV-2 Mpro and TMPRSS2, we performed FEP-ABFE-based virtual screening for ∼12,000 protein-ligand binding systems on a new generation of Tianhe supercomputer. A task management tool was specifically developed for automating the whole process involving more than 500,000 MD tasks. In further experimental validation, 50 out of 98 tested compounds showed significant inhibitory activity towards Mpro, and one representative inhibitor, dipyridamole, showed remarkable outcomes in subsequent clinical trials. This work not only demonstrates the potential of FEP-ABFE in drug discovery but also provides an excellent starting point for further development of anti-SARS-CoV-2 drugs. Besides, ∼500 TB of data generated in this work will also accelerate the further development of FEP-related methods.

16.
Toxicol Rep ; 9: 1586-1594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518391

RESUMO

As most cocaine users drink alcohol, it is interesting to understand how a non-lethal dose of alcohol affects the metabolism and toxicity of cocaine. In this study, we examined the correlation between dose-dependent toxicity and the metabolism/pharmacokinetic (PK) profile of cocaine with or without alcohol (ethanol, 1 g/kg) co-administration in rats. The cocaine toxicity in rats with or without alcohol co-administration is characterized by not only the commonly used LD50, but also the average times for the appearance of convulsion and death as well as total toxicity level (TTL) in the blood. All these data have consistently demonstrated that co-administration of alcohol increased cocaine toxicity, and that the alcohol-enhanced toxicity of cocaine is mainly attributed to the observed two additional metabolites (cocaethylene and norcocaethylene - products of chemical reactions of cocaine with alcohol catalyzed by metabolic enzymes carboxylesterase-1 and liver microsomal cytochrome P450 3A4) that are more toxic than cocaine itself. So, evaluation of the substance TTL should account for the blood levels of not only cocaine itself, but also its all toxic metabolites. In addition, for rats died of a lethal dose of cocaine (60 or 100 mg/kg) combined with 1 g/kg alcohol, we also determined the TTL at the time of death, demonstrating that death would occur once the TTL reached a threshold (~16 µM).

17.
Addict Biol ; 27(6): e13236, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301205

RESUMO

As well known, cocaine induces stimulant effects and dopamine transporter (DAT) trafficking to the plasma membrane of dopaminergic neurons. In the present study, we examined cocaine-induced hyperactivity along with cocaine-induced DAT trafficking and the recovery rate of the dopaminergic system in female rats in comparison with male rats, demonstrating interesting gender differences. Female rats are initially more sensitive to cocaine than male rats in terms of both the DAT trafficking and hyperactivity induced by cocaine. Particularly, intraperitoneal (i.p.) administration of 5 mg/kg cocaine induced significant hyperactivity and DAT trafficking in female rats but not in male rats. After repeated cocaine exposures (i.e., i.p. administration of 20 mg/kg cocaine every other day from Day 0 to Day 32), cocaine-induced hyperactivity in female rats gradually became a clear pattern of two phases, with the first phase of the hyperactivity lasting for only a few minutes and the second phase lasting for over an hour beginning at ~30 min, which is clearly different from that of male rats. It has also been demonstrated that the striatal DAT distribution of female rats may recover faster than that of male rats after multiple cocaine exposures. Nevertheless, despite the remarkable gender differences, our recently developed long-acting cocaine hydrolase, known as CocH5-Fc(M6), can similarly and effectively block cocaine-induced DAT trafficking and hyperactivity in both male and female rats.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Masculino , Feminino , Ratos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Cocaína/farmacologia , Cocaína/metabolismo , Fatores Sexuais , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/metabolismo , Membrana Celular/metabolismo
18.
Neuropharmacology ; 220: 109239, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126727

RESUMO

Cocaine abuse increases the incidence of HIV-1-associated neurocognitive disorders. We have demonstrated that HIV-1 transactivator of transcription (Tat) allosterically modulates dopamine (DA) reuptake through the human DA transporter (hDAT), potentially contributing to Tat-induced cognitive impairment and potentiation of cocaine conditioned place preference (CPP). This study determined the effects of a novel allosteric modulator of DAT, SRI-32743, on the interactions of HIV-1 Tat, DA, cocaine, and [3H]WIN35,428 with hDAT in vitro. SRI-32743 (50 nM) attenuated Tat-induced inhibition of [3H]DA uptake and decreased the cocaine-mediated dissociation of [3H]WIN35,428 binding in CHO cells expressing hDAT, suggesting a SRI-32743-mediated allosteric modulation of the Tat-DAT interaction. In further in vivo studies utilizing doxycycline-inducible Tat transgenic (iTat-tg) mice, 14 days of Tat expression significantly reduced the recognition index by 31.7% in the final phase of novel object recognition (NOR) and potentiated cocaine-CPP 2.7-fold compared to responses of vehicle-treated control iTat-tg mice. The Tat-induced NOR deficits and potentiation of cocaine-CPP were not observed in saline-treated iTat-tg or doxycycline-treated G-tg (Tat-null) mice. Systemic administration (i.p.) of SRI-32743 prior to behavioral testing ameliorated Tat-induced impairment of NOR (at a dose of 10 mg/kg) and the Tat-induced potentiation of cocaine-CPP (at doses of 1 or 10 mg/kg). These findings demonstrate that Tat and cocaine interactions with DAT may be regulated by compounds interacting at the DAT allosteric modulatory sites, suggesting a potential therapeutic intervention for HIV-infected patients with concurrent cocaine abuse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , HIV-1 , Animais , Cocaína/metabolismo , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cricetinae , Cricetulus , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Doxiciclina , Humanos , Camundongos , Camundongos Transgênicos , Recompensa , Transativadores , Fator de Transcrição DP1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
19.
PLoS One ; 17(9): e0275182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170295

RESUMO

Dysregulation of dopaminergic transmission induced by the HIV-1 transactivator of transcription (Tat) has been implicated as a central factor in the development of HIV-1 associated neurocognitive disorders (HAND). We have demonstrated that the tyrosine470 residue of the human dopamine transporter (hDAT) plays a critical role in Tat-hDAT interaction. Based on the computational modeling predictions, the present study sought to examine the mutational effects of the tyrosine467 residue of the human norepinephrine transporter (hNET), a corresponding residue of the hDAT tyrosine470, on Tat-induced inhibition of reuptake of dopamine through the hNET. Mutations of the hNET tyrosine467 to a histidine (Y467H) or a phenylalanine (Y467F) displayed similar kinetic properties of reuptake of [3H]dopamine and [3H]norepinephrine in PC12 cells expressing wild-type hNET and its mutants. Compared to wild-type hNET, neither of Y467H or Y467F altered Bmax and Kd values of [3H]WIN35,428 binding, whereas Y467H but not Y467F decreased the Bmax of [3H]nisoxetine binding without changes in Kd. Y467H also increased the affinity of nisoxetine for inhibiting [3H]dopamine uptake relative to wild-type hNET. Recombinant Tat1-86 (140 nM) induced a significant reduction of [3H]dopamine uptake in wild-type hNET, which was attenuated in both Y467H and Y467F. Compared to wild-type hNET, neither Y467H or Y467F altered [3H]dopamine efflux in CHO cells expressing WT hNET and mutants, whereas Y467F but not Y467H decreased [3H]MPP+ efflux. These results demonstrate tyrosine467 as a functional recognition residue in the hNET for Tat-induced inhibition of dopamine transport and provide a novel insight into the molecular basis for developing selective compounds that target Tat-NET interactions in the context of HAND.


Assuntos
HIV-1 , Simportadores , Animais , Cricetinae , Cricetulus , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Fluoxetina/análogos & derivados , HIV-1/genética , HIV-1/metabolismo , Histidina/metabolismo , Humanos , Mutação , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Fenilalanina/metabolismo , Ratos , Simportadores/metabolismo , Transativadores/genética , Tirosina/metabolismo
20.
PLoS One ; 17(8): e0272941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980910

RESUMO

When coronavirus disease 2019 (COVID-19) became a pandemic, one of most important questions was whether people who smoke are at more risk of COVID-19 infection. A number of clinical data have been reported in the literature so far, but controversy exists in the collection and interpretation of the data. Particularly, there is a controversial hypothesis that nicotine might be able to prevent SARS-CoV-2 infection. In the present study, motivated by the reported controversial clinical data and the controversial hypothesis, we carried out cytotoxicity assays in Vero E6 cells to examine the potential cytoprotective activity of nicotine against SARS-CoV-2 infection and demonstrated for the first time that nicotine had no significant cytoprotective activity against SARS-CoV-2 infection in these cells.


Assuntos
COVID-19 , Animais , Chlorocebus aethiops , Humanos , Nicotina/farmacologia , Pandemias , SARS-CoV-2 , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...